4. CONSTRUCTION MANAGEMENT PLAN

GRADY RANCH
2828 Lucas Valley Road,
San Rafael, CA

NOVEMBER 2nd 2009
TABLE OF CONTENTS

1.0 GENERAL
- 1.1 INTRODUCTION
- 1.2 APPLICABILITY
- 1.3 DEFINITIONS AND TERMS

2.0 PROJECT INTRODUCTION
- 2.1 DISTURBANCE AREA
- 2.2 LOCATION
- 2.3 DESCRIPTION

3.0 PROJECT DOCUMENTATION
- 3.1 PERMITS / OTHER DOCUMENTS
- 3.2 PROJECT SIGN
- 3.3 CONTACT DESIGNATION

4.0 PROJECT IMPLEMENTATION
- 4.1 DATES OF CONSTRUCTION
- 4.2 HOURS OF CONSTRUCTION
- 4.3 SEQUENCE (PHASING) OF CONSTRUCTION
- 4.4 ADJOINING PROPERTY OWNERS
- 4.5 PROJECT FENCING
- 4.6 PUBLIC HEALTH AND WELFARE
- 4.7 NATURAL ENVIRONMENT
- 4.8 CREEK RESTORATION

5.0 SITE LOGISTICS
- 5.1 CONSTRUCTION PARKING
- 5.2 VEHICLE ACCESS
- 5.3 STAGING AREAS AND MATERIAL HANDLING
- 5.4 CONSTRUCTION TRAILER, MATERIALS STORAGE, AND WASTE MANAGEMENT

6.0 TRAFFIC CONTROL
- 6.1 GENERAL
- 6.2 HAUL ROUTES
- 6.3 ONSITE VEHICLE LIMITATIONS
- 6.4 DELIVERY REQUIREMENTS
- 6.5 TRAFFIC CONTROL PLAN
- 6.6 REALIGNMENT OF LUCAS VALLEY ROAD
7.0 PEDESTRIAN PROTECTION
 7.1 GENERAL

8.0 SEDIMENT AND EROSION CONTROL
 8.1 REQUIREMENTS

9.0 DUST CONTROL
 9.1 DUST CONTROL PLAN
 9.2 REQUIREMENTS

10.0 EMISSIONS & NOISE SUPPRESSION
 10.1 EMISSIONS
 10.2 CONSTRUCTION NOISE EMISSIONS
 10.3 CONSTRUCTION NOISE SUPPRESSION
 10.4 EXPECTED OPERATIONAL NOISE

APPENDICES
A - Required Project Signs
B – Owner & Design Team Contact Details
C – Site Logistics Site Plan
D – Haul Route Map
E – Construction Sequence for Realignment of Lucas Valley Road
F – Schedule of Materials
G – Construction Schedule
1.0 GENERAL

1.1 INTRODUCTION
This Construction Management Plan is intended to provide a consistent framework and set of guidelines under which certain physical aspects of construction management will be implemented. The elements contained in this document are related to the process of development. It is intended that they apply to the work associated within the proposed Grady Ranch Project.

This Plan cannot anticipate all situations. It is intended to assist, but not to substitute for competent work by design and construction professionals. This Plan does not intend to limit any innovative or creative efforts that could result in better construction or management quality, greater cost savings or schedule efficiencies. Any proposed departure from the Plan will be compared to the expectation that such variance will produce a comparable result, adequate for the Owner and County over the duration of the project.

1.2 APPLICABILITY
This Plan shall pertain to the construction and development of Grady Ranch. These guidelines shall apply to all areas of development which disturb 1000 SF or greater or require demolition, improvement, or renovation within the property.

1.3 DEFINITIONS AND TERMS
Construction Management Plan – A Construction Management Plan is a combination of diagrams, documents, drawings, and specifications that clearly define the steps that will be taken to demonstrate how the impacts to the community will be minimized. How the impacts associated with any construction project will be managed.

Owners Construction Manager – An appointed employee or consultant of Skywalker Properties Ltd whose charge is to ensure that all aspects of the Construction Management Plan are followed, and to further ensure that the impacts associated with construction activities within the project are effectively managed and impacts associated with this project are the least necessary to accomplish the project.

Construction Area – Any portion of land where topsoil or native soils have been removed for the purposes of construction.

Best Management Practices – Schedules of activities, prohibition of practices, maintenance procedures and other management practices intended to prevent or reduce the pollution of waters, reduce the environmental and wildlife impacts and practices to control site runoff, spillage and leaks, waste disposal and drainage from materials storage.

Tree Drip-line and Protection Zone – Is defined in Section 1.3 of the Tree Preservation and Guidelines Report prepared by WRA.
2.0 PROJECT LOCATION

2.1 DEVELOPMENT AREA
The Development Area is shown and described on Drawing EN4.2, totaling 263,135 SF or 2.52% of the total site. Construction staging and phasing shall occur, where applicable, to minimize soil disturbance time. Construction staging may occur out with the defined Development Area, refer to Appendix C – Site Logistics Site Plan.

2.2 LOCATION
A project vicinity map is included on Drawing EN1. The map accurately depicts the general project location and also delineates the project extents.

2.3 DESCRIPTION
This Phase of the Grady Ranch Development includes construction of the Main Building, Gate House Building, main entry road, realignment of the upper fire road around the Main Building, eight bridges and other related improvements such as water tanks, restoration and enhancement of Miller Creek, Landmark Creek and other tributaries located on the property. Restoration and enhancement plans include improving the habitat functions and values of the Stream Conservation Area as well as creek channels.

The project incorporates low development impact practices to manage storm water through a natural system that is coordinated with the Stream Conservation Area restoration and enhancement.

3.0 PROJECT DOCUMENTATION

3.1 PERMITS / OTHER DOCUMENTS
The contractor shall maintain all applicable local, state and federal licenses and permits including any public utility and improvement agreements and related County ordinances.

3.2 PROJECT SIGNS
A project sign shall be constructed and posted that includes the items shown in Appendix A: Required Construction Sign. The sign shall be posted in a location where it is readable from Lucas Valley Road and shall meet criteria in County Codes.

3.3 CONTACT DESIGNATION
This Plan has a contact list with associated phone numbers as shown in Appendix B attached to this document. The list includes owner, design team consultants and will be supplanted, once a contractor is appointed, with the contact details of the contractor appointed overall site and safety supervisor. Other information shall include County phone
numbers, fire department, sheriff department and all applicable utility company contact information. The contact list should also include hospital contact information, (Marin General), and the Emergency 911 reminder.

4.0 PROJECT IMPLEMENTATION

4.1 DATES OF CONSTRUCTION
Dates of construction are shown in detail within the proposed construction schedule attached, however the anticipated construction start date is March 2011 and the anticipated completion date is expected to be July 2013. Although it should be noted that the proposed construction schedule is conditional on receipt of required approvals and subsequent completion of design documentation and therefore the anticipated start date and allowable sequence of events within the construction schedule may vary.

4.2 HOURS OF CONSTRUCTION
Construction hours shall be limited to 7am – 6pm Monday through Friday and 8am – 5pm on Saturday. Only silent construction work is permitted on Sundays or Holidays.

4.3 SEQUENCE (PHASING) OF CONSTRUCTION
A construction schedule including all project phasing, with item details, and specific item completion dates or duration of phasing is attached as an appendix to this Plan. This schedule has been developed using Microsoft Project.

4.4 ADJOINING PROPERTIES
No excavations will be carried out on land close enough to a property line to endanger any adjacent public street, sidewalk, paths, other public or private property, or easement, without supporting and protecting the property from any significant impact that might result from construction operations.

4.5 PROJECT FENCING
The main construction areas shall have a non-removable construction fence or other approved device securely placed around the areas to be protected. The fence shall be six feet (6') in height and constructed out of chain-link fence with mesh windscreens.

4.6 PUBLIC HEALTH AND WELFARE
All construction companies and operatives working on projects located at Grady Ranch will be required to uphold utmost respect to public health and welfare.
4.7 NATURAL ENVIRONMENT
Project construction shall be oriented to minimize harm to all aspects of the Grady Ranch natural environment. All tree and natural resource protection measures will be identified and in place prior to the commencement of any construction or demolition activities.

4.8 CREEK RESTORATION
Phase 1 of creek restoration will focus on Miller Creek downstream of the Grady Ranch bridge, and will include Grady Creek, and tributary S-4. These activities will occur concurrently with construction of the new bridge over tributary S-4 (Bridge 1). The intended timing of construction within the creeks is consistent with the biologist recommendations, i.e. only between July 1st and October 15th each year.

Phase 2 of creek restoration will focus on Miller Creek upstream of Grady Bridge and the tributaries that enter Miller Creek upstream from the bridge. Phase 2 includes a long section of creek channel which may be further subdivided into sub-phases for completion during consecutive summers if necessary; transition zones between the sub-phases will be constructed to provide a stable transition between restored and to-be-restored reaches for the one winter between restoration phases. Construction would progress from upstream (at proposed Bridge 8) to downstream. Stabilization of knick points within the northern tributaries would be completed concurrently with bridge construction associated with the proposed fire road improvements (Bridges 5-7). Stabilization of knick points within the S-3 tributary would occur concurrently as treatments within Miller Creek at the S-3 confluence.

The proposed restoration reaches of Miller Creek, Grady Creek, and tributaries typically go dry by early July, even in wet years such as 1983. Therefore, no water diversions or fish rescue will be necessary during restoration unless, possibly, construction follows a very wet year.

The material required for the stream restoration is excavated in the reverse order of how it is needed. Thus, all excavated material for the streams will need to be stockpiled. The upland areas on the property will be built up first and then the fill will be placed in the creek beds.
Approximately the first two feet of the creek-bed material will be removed, stock-piled, and then reused toward the end of that phase of restoration to line the raised creek bed. The creek bed will be cleared and grubbed, and keyed.

The top soil from the excavation site (Main Building site) will be stockpiled for the fill site on the east side of Grady Creek. The first material below the top soil at the excavation site can be used for berms and other types of fill in upland areas. As the excavation goes deeper, there will be larger elements of material that will include sandstone, etc. This material will be roughly sorted and then used to refill the creek in compacted, well-graded lifts to build up the base of the creek for the coarser layer. The coarser material excavated from the deeper areas of the cut site will then be placed on the creek bed.

The boulder and log weirs will be keyed into the compacted basal material and native bank material. Every third or fourth weir will extend through the fill and be keyed in to native material at the existing stream bed to provide additional stability. Placement of boulder weirs will correspond to existing bedrock exposures to the extent that curvature and pool-riffle spacing design parameters, (c.f., Riley, 2003) so allow. Layers of gravel and cobbles, with some sand, will be placed on top of the fill material and capped with the material from the existing excavated bed. The pool and riffle structures will be sculpted into this material, anchored by the primarily buried rock and log structures.

5.0 SITE LOGISTICS

5.1 CONSTRUCTION PARKING
A Site Logistics Site Plan is shown in appendix C attached to this Plan. The site plan indicates the location of access routes, construction trailers and toilet facilities, material storage areas and temporary construction parking. All site personal and visitors will be restricted to parking in the designated areas.

The average daily parking demand is estimated at 100 vehicles per day with a peak load of 240 vehicles. The site plan provides for 150 temporary parking stalls. Peak loads are expected to occur after the main building structure has been completed and interior work is in progress. At this time parking for select personal will be allowed in the building basement to accommodate the overflow.

On-site parking permits will be issued to subcontractors for distribution to employees. Car pooling will be required to reduce the parking loads.

No construction parking will be permitted on Lucas Valley Road or surrounding residential streets.
5.2 VEHICLE ACCESS

Initial site access for site establishment and construction of the bridges will be via the existing access gate and dirt road. A full time flagman will be provided to ensure that vehicles enter and exit the site in a safe manner.

Once Bridge 1 has been constructed, the long term permanent site access point will be established at the intersection of the proposed re-aligned Lucas Valley Road and the existing Lucas Valley Road. Public traffic will continue to use the existing road while construction traffic will enter the site over Bridge 1. On completion of major construction activities the new road will be constructed and opened to public traffic.

The site entrance will be flagged and monitored for the duration of the project. The existing site entrance will be maintained for use as an emergency exit/entrance only, throughout the duration of the project until the new main entrance is constructed and operational.

30’ Wide on-site hauling routes will be maintained per the attached site plan. A truck wash and load check area will be established for outbound trucks. The Stream Conservation Area Boundary will be fenced off with a ski fence and temporary fence poles.

During major off-haul operations, trucks will be restricted from leaving the site within a 5 minute period in order to mitigate traffic congestion at the intersections on Lucas valley Road.

The site entrance will be clearly marked and temporary signage will be installed to warn oncoming traffic of the construction site entrance. Construction warning and speed restriction signs will be erected prior to each end of the site.

The contractor shall maintain continuous emergency vehicle access, on and around site, including but not limited to police, fire, and ambulance services.

5.3 STAGING AREAS AND MATERIAL HANDLING

The Site Logistics Site Plan shows temporary material lay down areas adjacent to the new building as well as temporary storage areas for excavated material to be used for creek infill at the required time.

All trucks arriving at the site shall be stacked within the site area. No vehicles will be permitted to idle on Lucas valley Road while waiting to access the site. During periods of high delivery activity that exceed the site capacity, a safe area will be established for offsite staging.
The project will utilize cranes and concrete pumps for material handling during the heavy structural operations. Interior construction and finishes material will be handled with forklifts.

Construction activities expected to generate significant quantities of material have been identified on Appendix F attached to this plan.

The number of truckloads expected to and from the site is estimated at 10,000 (including soil hauling and materials transport). Material deliveries will be scheduled to mitigate the impact on area and avoid conflicts with construction personnel traffic.

As part of the stream restoration work, significant material storage and sorting areas will be required.

The equipment placement and material stockpiles on site shall be reviewed and approved by the geotechnical engineer.

5.4 CONSTRUCTION TRAILERS AND MATERIALS STORAGE
As specified in Section 5.1, construction trailer, job materials storage, portable restrooms, waste management and recycling container locations are clearly designated on the project site plan. Loose job material storage will not be permitted to block construction site roads.

An area on the south side of the site has been identified for subcontractor’s storage yards and containers. Onsite storage of fuel will be restricted to a secondary containment area within this area.

Areas closer to the building have been designated for short term material transfer or lay down.

All job trailers, waste management containers, and portable restrooms shall be located within the site boundary and shall not impede on Stream Conservation Area setbacks or adjoining property.

Portable restrooms shall be located adjacent to the jobsite trailers and on the perimeter of the main building, with access for maintenance trucks. A toilet trailer will be included as part of the main site compound set up.

Construction trailers will be provided as follows:

- Owners Management Team and Consultants 40’ x 72’
- General Contractor 40’ x 72’
- Mechanical Subcontractor 40’ x 48’
5.5 CONSTRUCTION WASTE MANAGEMENT

The Construction waste management Plan will comply with local construction and demolition waste recovery ordinance including County of Marin Green Building Regulations.

A more detailed waste management Plan (“WMP”) will be submitted for approval at a later date.

In general construction waste will be collected and sorted in the following categories for recycling:

- Paper products
- Cardboard
- Glass
- Metal Cans
- Aluminum
- Empty containers
- Concrete
- Asphalt
- Metals
- Untreated Wood Waste
- Treated Wood Waste
- Soil
- Vegetation

The construction waste reduction plan shall be implemented and executed in the following order:

A – Material reused on site.
B – Material reused off site.
C – Material Recycled at local recycling center (*see below).
D – Material transported to approved landfill

The waste material reception area is anticipated as being Redwood Landfill & Recycling Center 8950 Redwood Highway, Novato, CA 94945, however prior to commencement of construction this will be re-evaluated and other suitable locations may be considered due to the construction commencement date being 2011.
The off-haul of soil and excavated material will be to the nearest location most economically feasible at time of construction.

- Dumpsters will be clearly labeled for respective materials.
- Lists of acceptable/unacceptable material will be posted throughout the site.
- All containers will be checked for compliance prior to collection.
- Hazardous waste will be handled by a licensed hazardous waste vendor.

All recycling containers will be accommodated onsite. Recycling requirements included in this section do not supersede project specific efficient building program requirements.

Contractors shall not permit accumulated debris, litter, or trash on the construction site to blow or scatter onto adjoining properties.

An onsite hazardous material spill cleanup kit will be required by the contractor.

6.0 TRAFFIC CONTROL

6.1 GENERAL
All traffic control operations shall be managed by the designated certified traffic control supervisor. It is anticipated that fulltime flagmen will be employed at all road access points during construction hours to manage access to and from site, until the planned Lucas Valley Road amendments are completed. Other traffic control methods will include barricades, barriers, signs and temporary traffic lights.

6.2 HAUL ROUTES
The designated haul route to and from the site is via the East (lower) entrance to the site at Bridge 1 and Eastward down Lucas Valley Road to Highway 101 as shown on Appendix D attached to this Plan, any additional routes necessary to complete hauling operations will be specified by the Contractor as soon as they are established. Project haul routes have been oriented to minimize traffic congestion and maximize pedestrian safety. All trucks greater than 40’ will be restricted from going West from the site on Lucas Valley Road.

Heavy Haul loads and oversized truck trips will be limited to weekday off-peak hours or weekend deliveries. Pilot cars will be provided as necessary for any oversized loads. Heavy haul and oversized loads constitute only a small percentage of all project construction traffic.
6.3 ONSITE VEHICLE LIMITATIONS
Construction activity will be spread out over an approximate 30 month construction period with varying levels of manpower, construction delivery and equipment use. The majority of project construction activities are anticipated to occur during normal daytime work hours. Possible exceptions may include limited night construction activities that are considered time critical (such as concrete pours or assembly and fabrication activities) and may require extension of normal working hours.

6.4 DELIVERY REQUIREMENTS
Traffic control required for deliveries must be fully coordinated with the County. Roads will not be closed under any circumstances, unless granted permission from the County. The maximum number of delivery vehicles on-site will be specified, along with the hours the deliveries will occur and any exceptions to this schedule. Delivery and heavy duty vehicles will have a visible sign on the vehicle that specifies the project contractors name and phone number.

Delivery vehicles and all other onsite vehicles are not allowed to idle for more than five (5) minutes, with the exception of generators or unless carrying out construction operations.

6.5 TRAFFIC CONTROL PLAN
A detailed Traffic Control Plan (TCP) shall be submitted as a supplement to this Construction Management Plan prior to commencement of construction by the General Contractor. The TCP shall be completed by a Certified Traffic Control Supervisor.

The traffic control plan will be implemented and enforced throughout the construction process by several means:

1. Safety Meetings detailing the restrictions on the use of Lucas Valley Road, the primary truck route.
2. Subcontractor Coordination Meetings, which are held weekly, will acquaint personnel and subcontractors with safety requirements, project specific rules and procedures, will include specific instructions on allowed and recommended routes for deliveries and employees.
3. Car pooling and use of public transportation where possible will be required.
4. Traffic routes will be discussed as a standing agenda item in regular site supervision meetings.

6.6 RE-ALIGNMENT OF LUCAS VALLEY ROAD
The realignment of Lucas Valley Road will affect traffic using the road, refer to Appendix F attached for additional detail on the impact on Lucas Valley Road traffic and the measures intended to be adopted to manage these impacts.
The condition of the existing Lucas Valley Road will be surveyed and documented including the use of photographs and video prior to commencement of construction activities.

Both prior to the start of construction and again upon completion of all construction activities, deflection testing using the “Dynaflect” method will be carried out for the length of road from the main gate at Grady Ranch to the start of Lucas Valley Estates, approximately 2080 LF Eastbound from Grady Ranch. The testing will also include core sampling of cross sections of the road and truck counts both prior to and after construction.

The results of this testing will be published and shared with the County allowing, if necessary, discussion with the County regarding the results and any corresponding impact to the road surface as a result of construction, if any.

7.0 PEDESTRIAN PROTECTION

7.1 GENERAL
There are currently no pedestrian routes along the perimeter of the site. All necessary pedestrian protection will be implemented by the contractor at any areas of pedestrian travel on the site for the purpose of protecting the workforce as they travel around the site, with special attention at bridge crossings utilized by both pedestrian and vehicular traffic. Protection measures shall include temporary barriers, walkways, covered walkways, railings, fencing and signage. These measures will be implemented prior to any construction operations being commenced in those areas affecting pedestrian travel. These protective measures will be maintained for the duration of the construction activity in those areas.

8.0 SEDIMENT AND EROSION CONTROL

8.1 REQUIREMENTS
A Storm Water Pollution Prevention Plan shall be completed as part of the construction documents, according to California Department of Public Health and Environment Water Quality Control.

The main objective of the storm water management plan shall be to identify Best Management Practices, which will minimize erosion and sediment transport. In addition the following requirements will apply:
1. Stock piles must be protected with erosion control devices.

2. Mud tracking ramps (rock construction entrances) are required to be implemented per the most current version of the California Department of Transportation construction standards.

3. Onsite concrete and tire washout stations will be required. The location as shown on the Site Entrance Enlarged Plan in Appendix C attached to this plan.

4. Drainage inlets, gutters, swales and irrigation ditches shall be protected with erosion control devices and such projection maintained for the duration of the project.

5. A description of procedures used to protect and maintain in good and effective operating condition the erosion/sediment control measures until final stabilization is required to be provided by the contractor prior to work proceeding. Onsite sediment and erosion control operations shall be managed by the General Contractors site supervisor.

6. Soil protection shall be implemented and maintained as necessary at the stream conservation areas.

9.0 DUST CONTROL

9.1 DUST CONTROL PLAN
Dust control and prevention will be attained by implementing a multi layered prevention and control process including timing and scheduling of dust initiating construction operations, continuous clean up on and around the site, continuous watering of open graded areas and access roads and landscaping including temporary landscaping of certain areas of site including irrigation.
The owner and contractor will implement whatever other additional measures may be required to properly prevent and control dust.

9.2 REQUIREMENTS
This plan is intended to demonstrate that the discharge of dust from the construction site will not occur, or can be controlled to a minimum level depending on the particular site conditions and circumstances by use of the following:

1. Site conditions during construction operations will be assessed prior to starting the particular operation and consideration given to the dust control methods that should be employed both before and during the particular operation. This
assessment will continue to be made throughout the operation and action taken by the site dust control team to mitigate and prevent dust. The timing of the operation along with weather conditions will also be considered for the purposes of preventing and controlling dust. A daily inspection of the site will occur at the end of normal working hours and temporary measures including netting, covers, watering implemented in order to prevent dust occurring after normal hours.

2. The contractor will provide the name and the 24 hour phone number of the site and safety supervisor who will be responsible for dust control and prevention.

3. During the importing or exporting of dirt, the contractor shall implement procedures necessary to keep the public streets and private properties along the haul route free of dirt, dust, and other debris, including the use of road sweeping and cleaning vehicles.

4. After grading work is completed and subsequent construction on the site is to be completed in stages, the portion of the site not under construction shall be treated with dust preventive substance or plant materials and an irrigation system.

5. While staging the project it shall be required, as much as possible, that dust will not be generated from future phased areas.

6. For all construction within the site, the contractor shall have water trucks available for the purposes of dust control. Wetting shall be completed at least three times a day under dry conditions or as directed by the Owners Construction Manager. Vehicle speeds shall not exceed 10mph on construction access roads and on any part of the construction site.

10.0 EMISSIONS & NOISE SUPPRESSION

10.1 EMISSIONS
All vehicles and equipment used on site will be properly maintained such that the engines will function within manufacturer’s standards or parameters.

10.2 CONSTRUCTION NOISE EMISSIONS
Construction of the project will generate noise on the site and at adjacent residential and other noise sensitive areas. Construction activities at the project site will include ground clearing, hillside excavation and grading, fill grading and compaction, bridge and roadway construction, and building construction. The highest noise levels during the construction of the project would be generated during earthmoving activities with lower noise levels occurring during building construction and finishing. Exhibits 1 and 2 describe typical A-
weighted average and instantaneous equivalent noise levels expected during various project construction activities.

Noise from construction activities at surrounding noise sensitive uses depends on the noise generated by various pieces of construction equipment, the timing and duration of noise generating activities, and the distance between construction noise sources and noise sensitive receptors. Equipment typically used for site excavation, road building and infrastructure installation includes bulldozers, rippers, excavators, graders, tractors, backhoes, compactors, rollers, concrete trucks, loaders, and pick-up, dump, and water trucks. These types of equipment generate considerable noise.

Large pieces of earthmoving equipment such as graders, scrapers, and bulldozers typically generate maximum noise levels of 83 to 88 dBA at a distance of 50 feet. Maximum hourly average construction noise levels of about 84 dBA to 88 dBA at 50 feet from center of construction activities would occur during busy periods of road building and site preparation.

Rock breaking and blasting may also be required at the site. Under typical conditions these activities would be expected to generate maximum noise levels of 81 to 94 dBA at 50 feet with maximum hourly average construction noise levels of about 74 dBA to 83 dBA at this distance.

Construction-related noise levels during building framing, finishing, and landscaping phases are normally lower than those produced during road building, site preparation and infrastructure installation. Maximum hourly average construction noise levels generated during busy periods of building construction would be between 87 dBA to 88 dBA at 50 feet from center of construction activities would occur, however under more common conditions, building activities would produce maximum hourly average noise levels of about 75 dBA at this distance.

Based on a review of the project site plan construction activities would take place as close as 60 feet from the eastern (residential) property line of the site when material is deposited at the eastern fill site, however the majority of the site work would occur at 200 feet or more from the eastern property line. Noise typically attenuates with distance due to the spreading out, or divergence, of sound waves with distance. For simple, sources such as fixed equipment and very slow moving or stationary construction activities, the divergence of the sound wave is hemispherical in nature producing a reduction of 6 dB with each doubling of distance. Thus noise levels at 200 feet would be expected to be 12 dB lower than those at 50 feet based on the consideration of distance attenuation only.

Workers using noisy equipment such as chipping guns, jack hammers, rock drills or any machinery generating noise levels over 85 dBA shall wear proper ear protection.
EXHIBIT 1:
RANGE OF AVERAGE NOISE LEVELS (Leq) AT 50 FT FROM CONSTRUCTION SITES

<table>
<thead>
<tr>
<th>Phase</th>
<th>Office Buildings, Hotels and Public Works</th>
<th>Public Works Roads & Highways, Sewers, and Trenches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Ground Clearing</td>
<td>84 dBA</td>
<td>84 dBA</td>
</tr>
<tr>
<td>Excavation</td>
<td>89 dBA</td>
<td>79 dBA</td>
</tr>
<tr>
<td>Foundations</td>
<td>78 dBA</td>
<td>78 dBA</td>
</tr>
<tr>
<td>Erection</td>
<td>87 dBA</td>
<td>75 dBA</td>
</tr>
<tr>
<td>Finishing</td>
<td>89 dBA</td>
<td>75 dBA</td>
</tr>
</tbody>
</table>

I - All pertinent equipment present at site.
II - Minimum required equipment present at site.

EXHIBIT 2:
CONSTRUCTION EQUIPMENT NOISE EMISSIONS AT 50- FEET

<table>
<thead>
<tr>
<th>Equipment Category</th>
<th>L_{max} Level (dBA) ¹ ²</th>
<th>Equipment Category</th>
<th>L_{max} Level (dBA) ¹ ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc Welder</td>
<td>73</td>
<td>Grinder Saw</td>
<td>85</td>
</tr>
<tr>
<td>Auger Drill Rig</td>
<td>85</td>
<td>Horizontal Boring Hydro-Jack</td>
<td>80</td>
</tr>
<tr>
<td>Backhoe</td>
<td>80</td>
<td>Hydra Break Ram</td>
<td>90</td>
</tr>
<tr>
<td>Bar Bender</td>
<td>80</td>
<td>Impact Pile Driver</td>
<td>101</td>
</tr>
<tr>
<td>Boring Jack Power Unit</td>
<td>80</td>
<td>Insitu Soil Sampling Rig</td>
<td>84</td>
</tr>
<tr>
<td>Blasting</td>
<td>94</td>
<td>Jackhammer</td>
<td>89</td>
</tr>
<tr>
<td>Chain Saw</td>
<td>85</td>
<td>Mounted Impact Hammer (hoe ram)</td>
<td>90</td>
</tr>
<tr>
<td>Compressor ³</td>
<td>70</td>
<td>Paver</td>
<td>85</td>
</tr>
<tr>
<td>Compressor (other)</td>
<td>80</td>
<td>Pneumatic Tools</td>
<td>85</td>
</tr>
<tr>
<td>Concrete Mixer</td>
<td>85</td>
<td>Pumps</td>
<td>77</td>
</tr>
<tr>
<td>Concrete Pump</td>
<td>82</td>
<td>Rock Drill</td>
<td>85</td>
</tr>
<tr>
<td>Concrete Saw</td>
<td>90</td>
<td>Scraper</td>
<td>85</td>
</tr>
<tr>
<td>Concrete Vibrator</td>
<td>80</td>
<td>Slurry Trenching Machine</td>
<td>82</td>
</tr>
<tr>
<td>Crane</td>
<td>85</td>
<td>Soil Mix Drill Rig</td>
<td>80</td>
</tr>
<tr>
<td>Dozer</td>
<td>85</td>
<td>Street Sweeper</td>
<td>80</td>
</tr>
<tr>
<td>Excavator</td>
<td>85</td>
<td>Tractor</td>
<td>84</td>
</tr>
<tr>
<td>Front End Loader</td>
<td>80</td>
<td>Truck (dump, delivery)</td>
<td>84</td>
</tr>
<tr>
<td>Generator</td>
<td>82</td>
<td>Vacuum Excavator Truck (vac-truck)</td>
<td>85</td>
</tr>
<tr>
<td>Generator (25 KVA or less)</td>
<td>70</td>
<td>Vibratory Compactor</td>
<td>80</td>
</tr>
<tr>
<td>Gradall</td>
<td>85</td>
<td>Vibratory Pile Driver</td>
<td>95</td>
</tr>
<tr>
<td>Grader</td>
<td>85</td>
<td>All other equipment with engines larger than 5hp</td>
<td>85</td>
</tr>
</tbody>
</table>

Notes: ¹ Measured at 50 feet from the construction equipment, with a “slow” (1 sec.) time constant.
² Noise limits apply to total noise emitted from equipment and associated components operating at full power while engaged in its intended operation.
³ Portable Air Compressor rated at 75 cfm or greater and that operates at greater than 50 psi.
10.3 CONSTRUCTION NOISE SUPPRESSION
The methods and techniques that will be adopted to mitigate construction noise at adjacent residential properties are as follows:

1. General construction activities will be limited to between 7am to 5pm Monday through Friday and 8am to 5pm on Saturday. No construction is permitted on Sundays, or Holidays.
2. All activities construction activities, which involve equipment that can generate noise in excess of 85 dBA at 50 feet (see Exhibit 2 above), will be limited to the hours of 8am and 5pm Monday through Friday.
3. Temporary noise barriers, such as mass loaded construction blankets on temporary fencing or a solid plywood construction barrier, will be placed around the perimeter of the construction staging/work areas during the entirety of its use and at the perimeter of each of the project phases before loud construction activities begin. The placement of these barriers will not allow clear, line of sight, openings for site access between the site activities and adjacent residential land uses.
4. All construction equipment powered by internal combustion engines will be properly muffled and maintained.
5. The unnecessary idling of internal combustion engines will be prohibited.
6. All stationary noise-generating construction equipment, such as air compressors, will be located as far as practical from existing nearby residences and other noise-sensitive land uses. Acoustical shielding will be employed (see item 3 above) for such equipment.
7. Quiet construction equipment, particularly air compressors, will be selected whenever possible and all motorized equipment will be fitted with proper mufflers in good working order.
8. A "noise disturbance coordinator" who is responsible for responding to any local complaints about construction noise will be selected. The disturbance coordinator would determine the cause of the noise complaint (e.g., starting too early, bad muffler, etc.) and would require that reasonable measures warranted to correct the problem be implemented. The telephone number for the disturbance coordinator will be conspicuously posted at the construction site and included in a notice sent to neighbors regarding the construction schedule. (The project sponsor will be responsible for designating a noise disturbance coordinator and posting the phone number and providing construction schedule notices).

The Implementation of these mitigation measures will allow compliance with the Local noise standards relevant to noise control for construction activities at the project site, these can be found in Implementation Program NO-1.i of the Noise Element of the Marin County Wide Plan and Section 6.70.030(5) of the Marin County Code. These standards are as follows:
• Implementation program NO-1.i of the Marin County Wide Plan Noise Element requires that as a condition of permit approval for projects generating significant construction noise impacts during the construction phase, construction management for any project shall develop a construction noise reduction plan and designate a disturbance coordinator at the construction site to implement the provisions of the plan.

• Section 6.70.030(5) of the Marin County Code restricts the hours of construction to between 7am and 6pm Monday through Friday, 9am to 5pm on Saturday, and prohibits construction on Sundays and Holidays. This section also restricts the operation, servicing and maintenance of loud noise-generating construction-related equipment (e.g., backhoes, generators, jackhammers) on construction sites to between 8 am to 5 pm Monday – Friday, with their use to be permitted by the County Community Development Agency.

10.4 EXPECTED OPERATIONAL NOISE
The Marin County General Plan Contains the Following Implementing Programs relative to acceptable noise levels at the adjacent residential uses:

NO-1.a Enforce Allowable Noise Levels. Through CEQA and County discretionary review, require new development to comply with allowable noise levels. The Acceptable Noise Levels in Figure 3-41 (60 dBA Ldn or less normally acceptable for Residential Land Uses) shall be used as a guide for determining the appropriate type of new development in relation to its ambient noise environment. Figure 3-41 applies primarily to proposed development exposed to transportation generated noise and to existing development exposed to increases in transportation generated noise due to proposed development. The standards in Figure 3-41 shall also be used to determine allowable noise levels for commercial, industrial, agricultural, or other less-noise-sensitive land uses exposed to stationery source noise generated by new development.

The Benchmarks for Allowable Noise Exposure from Stationary Noise Sources in Figure 3-43 shall be used as a guide for establishing allowable noise levels produced by stationary noise sources. These standards shall apply to new residential projects and other noise-sensitive land uses proposed near stationary noise sources. The standards shall also apply to new stationary noise-generating development proposed near existing residential or other noise-sensitive land uses.

| Figure 3-43 Benchmarks for Allowable Noise Exposure from Stationary Noise Sources |
|--------------------------|------------------|------------------|
| Hourly L_{eq}, dBA | Daytime (7 A.M. to 10 P.M.) | Nighttime (10 P.M. to 7 A.M.) |
| Maximum Level, dBA | 50 | 65 |
| Maximum Level, dBA (Impulsive Noise) | 65 | 65 |
NO-1.b Comply with Acceptable Noise Levels. Require discretionary permits for residential and other noise-sensitive land uses proposed near noise sources that may exceed acceptable noise levels and/or benchmarks to provide acoustical analyses; and, if necessary, commit to measures to comply with the applicable standards set out in Program NO-1.a. Amend the Development Code to include these requirements.

NO-1.c Require Project-Specific Noise Mitigation. Require all development to mitigate its noise impacts where the project would
- raise the Ldn by more than 5 dBA;
- raise the Ldn by more than 3 dBA and exceed the Normally Acceptable standard; or
- raise the Ldn by more than 3 dBA and the Normally Acceptable standard is already exceeded.

NO-1.d Set Additional Limits for Housing. Amend the Development Code to require the following maximum noise levels for all new residential units:
- Exterior — 60 dBA Ldn
- Interior — 45 dBA Ldn

OPERATIONAL NOISE LEVELS
Once construction of the project is complete, daily operations that may produce noise will include guest and employee traffic, building mechanical equipment noise, and filming activities at interior and exterior stages. There is also a potential to develop some of the site for agricultural uses.

Onsite Parking and Traffic Noise
Automobile traffic on project roadways and parking lots will typically produce maximum noise levels of between 56 and 66 dBA at 25 feet while Trucks on roadways and parking lots will typically produce maximum noise levels of between 68 and 78 dBA at 25 feet. The access road and parking lots will be over 500 feet from the eastern (residential) property line of the site and will be largely shielded by the proposed fill site at the eastern portion of the site. Noise from moving traffic typically attenuates with distance at a rate of 3 dB with each doubling of distance. Thus, noise levels at 500 feet would be expected to be 13 dB lower than those at 50 feet based on the consideration of distance attenuation only. Additional acoustical shielding of a minimum of 10 dB would be expected from intervening terrain, particularly the proposed fill site. Based on this degree of attenuation maximum noise levels produced by autos will be below 45 dBA and maximum noise levels produced by trucks will be below 55 dBA at the eastern (residential) property line of the site. Using these maximum levels in combination with a considered of moderate, typically daytime only, traffic noise levels due to traffic on project roadways and parking lots would not be expected to approach an average day/night (L_{dn}) sound level of 60 dBA at the eastern (residential) property line of the site.
Building Mechanical Equipment

Though the specifics of the mechanical equipment at the project has not been reviewed we would expect individual rooftop HVAC units to produce sound levels of between 70 and 75 dBA at 3 feet from the equipment. Based on a sound loss of 6 dB per doubling of distance from a point source and considering the distance to the closest residential property line at 500 feet from the edge of the building and dispersed unit placements on the rooftop, building equipment sound levels at the eastern (residential) property line of the site would expected to be below 35 dBA. This level of sound would be well below the County Noise Element limit for stationary equipment (Re. Table 3-43).

Interior and Exterior Filming Activities

The primary filming operations will occur within the structure of the main building with occasional filming at the outdoor water stage area, which is located on the opposite side of the main building from the closest eastern (residential) property line. When filming occurs in either of these locations, the structure of the building is expected to provide a minimum of 12 dB of noise attenuation. This degree of noise attenuation combined with an estimated attenuation of 10 dB provided by the intervening terrain of the proposed fill site, and a reduction of 6 dB with each doubling of distance from a fixed position noise source, would reduce noise levels from staging and filming (measured at 25 feet from the source) by about 50 dBA at the residential property line. Therefore, even very loud hourly noise levels in the filming areas (up to 100 dBA at 25 feet) would be expected to meet the County’s daytime hourly L_{eq} benchmark for allowable noise exposure from stationary noise sources (see Table 3-43). Based on this finding it is expected that noise from filming operations at the project would comply with County noise standards.

Agricultural Uses at the Site

Though no specifics as to agricultural uses at the have been specified or reviewed, and thus cannot be qualitatively analyzed, it should be noted that though agricultural use of the site may will somewhat alter the existing noise environment at the residential uses to the east, this type of noise is typically judged to be compatible with a rural environment, and that with agricultural use of the site, noise levels are expected to remain below the maximum levels considered acceptable for residential development by the County’s general plan.
APPENDIX A – REQUIRED PROJECT SIGNS

Entrance Signs:
At each site entrance there is required to be a project information sign stating the project name and general contractor’s name. There will also be speed limit signs and signs showing Entrance and Exit paths of travel.

Safety Signs:
At each site entrance there is also required to be a site safety sign stating use of safety equipment is required on the site. These will also be posted throughout the project site particularly at the entrances to buildings and close to any other structures being constructed.
APPENDIX B – OWNER & DESIGN TEAM CONTACT DETAILS

Owner:
Skywalker Properties, Ltd.
5858 Lucas Valley Road
Nicasio, CA, 94946
Contact: Angelo Garcia
Tel: (415) 746-5006
Fax: (415) 746-5015

Environmental Planner, Landscape Architect:
CSW/Stuber-Stroeh Engineering Group, Inc.
45 Leveroni Court
Novato, CA, 94949
Contact: Georgia McDaniel
Tel: (415) 883-9850
Fax: (415) 883-9835

Geomorphologist:
Balance Hydrologics, Inc.
101 Lucas Valley Road, Suite 209
San Rafael, CA, 94903
Contact: Mark Woyshner
Tel: (510) 704-1000 ext. 209
Fax: (510) 704-1001

Biologist/Wetland Specialist, Landscape Architect:
WRA Environmental Consultants
2169 East Francisco Blvd., Suite G
San Rafael, CA, 94901
Contact: Tom Fraser
Tel: (415) 454-8868 ext. 118
Fax: (415) 454-0129

Civil Engineer:
CSW/Stuber-Stroeh Engineering Group, Inc.
45 Leveroni Court
Novato, CA, 94949
Contact: Emily Dean
Tel: (415) 883-9850
Fax: (415) 883-9835
APPENDIX B – OWNER & DESIGN TEAM CONTACT DETAILS – continued.

Geotechnical Engineer:
AMEC Geomatrix
2101 Webster Street, 12th Floor
Oakland, CA, 94612
Contact: Jim French
Tel: (510) 663-4238
Fax: (510) 663-4141

Architect:
Urban Design Group
15950 North Dallas Parkway, Suite 325
Dallas, TX, 75248
Contact: Samantha Hunt-Garbarino
Tel: (972) 788-9242
Fax: (972) 788-9234

MEP Engineer:
Interface Engineering
717 Market Street, Suite 500
San Francisco, CA, 94103
Contact: Rick Russell
Tel: (415) 489-7240
Fax: (415) 489-7289

Cost Consultant, Project Management Consultant:
TBD Consultants
111 Pine Street, Suite 1315
San Francisco, CA, 94111
Contact: Brian Tolland
Tel: (415) 981-9430
Fax: (415) 981-9434
APPENDIX C – SITE LOGISTICS SITE PLAN

See attached Site logistics Site Plan
APPENDIX C

GENERAL NOTES

(1) The location of temporary fences, construction trailers and equipment are approximate. Final locations will be dictated by existing site conditions to minimize impact on the existing site conditions and public roadway.

(2) Temporary creek crossings will be provided as necessary.

(3) Fences will be terminated at creek edges to provide a secure site without affecting the normal water flow. Temporary security fencing may be required during the dry season.

(4) The existing site entrance will be used until Bridge # 1 is constructed and the main construction site access is established. Flagmen will be used to ensure safe operation of the existing entrance.
APPENDIX D – HAUL ROUTE MAP

See attached Haul Route Map
APPENDIX E – CONSTRUCTION SEQUENCE FOR RE-ALIGNMENT OF LUCAS VALLEY ROAD

<table>
<thead>
<tr>
<th>CONSTRUCTION ACTIVITY</th>
<th>IMPACTS ON TRAFFIC ON LVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clear and grub trees, fencing, temporary fencing, etc.</td>
<td>No impacts on traffic for north-side work.</td>
</tr>
<tr>
<td>2. Install traffic control devices/signs.</td>
<td>Flagmen. One lane traffic for a short time.</td>
</tr>
<tr>
<td>3. Trim trees on south side of LVR. Relocate overhead utilities. One pole @ east end;</td>
<td>Flagmen. One lane traffic for a short time for work at each end.</td>
</tr>
<tr>
<td>one or two poles @ west end. (Only if undergrounding of overhead utilities has not</td>
<td></td>
</tr>
<tr>
<td>yet happened).</td>
<td></td>
</tr>
<tr>
<td>4. Grading work for new road except at each end. Remove guardrail @ west end.</td>
<td>No impact for grading. Cautionary flagmen during removal of guardrail. Utilize existing</td>
</tr>
<tr>
<td></td>
<td>driveway intersection for equipment.</td>
</tr>
<tr>
<td>5. Grading conform to west end; embankment & sub grade—no paving or base.</td>
<td>Flagmen. One lane traffic for a short time.</td>
</tr>
<tr>
<td>6. Build-up creek embankment @ east end. (Likely done earlier in project)</td>
<td>No impact.</td>
</tr>
<tr>
<td>7. Grading conform to east end; during embankment, sub grade, & bridge pad, abutments</td>
<td>Flagmen. One lane traffic for a short time—work hours only.</td>
</tr>
<tr>
<td>and footings.</td>
<td></td>
</tr>
<tr>
<td>8. Construct bridge, cast in place box girder, 45-60 days.</td>
<td>No impact. Cautionary flagmen.</td>
</tr>
<tr>
<td>9. Construct retaining wall @ east end.</td>
<td>Cautionary Flagmen and intermittent one lane traffic short time.</td>
</tr>
<tr>
<td>10. Conform grading @ east end.</td>
<td>Cautionary Flagmen and intermittent one lane traffic short time.</td>
</tr>
</tbody>
</table>
APPENDIX E – CONSTRUCTION SEQUENCE FOR RE-ALIGNMENT OF LUCAS VALLEY ROAD, continued.

<table>
<thead>
<tr>
<th>CONSTRUCTION ACTIVITY</th>
<th>IMPACTS ON TRAFFIC ON LVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Road base - entire road.</td>
<td>Flagmen. One lane traffic for a short time for each end conform.</td>
</tr>
<tr>
<td>13. Paving - entire road.</td>
<td>Flagmen. One lane traffic short time at each end conform. Short road closure at each end.</td>
</tr>
<tr>
<td>15. Cut over to new road. Striping</td>
<td>Cautionary flagmen and cones.</td>
</tr>
<tr>
<td></td>
<td>conform.</td>
</tr>
<tr>
<td>16. Remove old asphalt concrete.</td>
<td>Cautionary flagmen. Trucks entering road</td>
</tr>
</tbody>
</table>
APPENDIX F – SCHEDULE OF MATERIALS

Construction activities expected to generate significant quantities of material are as follows:

1. Site earthwork and grading – estimated at 223,770 CY of cut and 188,810 CY of fill, resulting in 34,960 CY of material requiring to be hauled offsite.
2. Structural steelwork – estimated at approximately 2000 T, delivered as required and stored on site in staging areas prior to erection.
3. Concrete – estimated at 30,000 CY, delivered as required and poured in place.
4. Plumbing & Mechanical materials – delivered as required and stored for construction on site in an estimated three temporary material storage containers.
5. Electrical materials – delivered as required and stored for construction on site in an estimated three temporary material storage containers.
6. Metal stud framing and drywall – delivered as required and stored for construction on site in an estimated four temporary material storage containers.
7. Roof tile – delivered as required and stored on site in temporary staging areas on wooden pallets prior to installation.
8. Paint – delivered as required and stored for use on site in an estimated one temporary material storage container, all in accordance with Cal OSHA.
9. Trees and Landscape material – delivered as required and stored in temporary protected, irrigated, nursery area prior to installation.
APPENDIX G – CONSTRUCTION SCHEDULE

See attached outline construction schedule.
<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tree Protection, Utility Supply and Site Set Up</td>
<td>16.2 wks</td>
<td>Mon 1/3/11</td>
<td>Mon 4/25/11</td>
</tr>
<tr>
<td>3</td>
<td>Tree protection and relocation</td>
<td>12 wks</td>
<td>Mon 1/3/11</td>
<td>Fri 3/25/11</td>
</tr>
<tr>
<td>7</td>
<td>Utilities</td>
<td>5 wks</td>
<td>Tue 3/15/11</td>
<td>Mon 4/18/11</td>
</tr>
<tr>
<td>12</td>
<td>Site Set Up</td>
<td>5 wks</td>
<td>Tue 3/22/11</td>
<td>Mon 4/25/11</td>
</tr>
<tr>
<td>20</td>
<td>Sitework</td>
<td>114 wks</td>
<td>Tue 4/26/11</td>
<td>Mon 7/1/13</td>
</tr>
<tr>
<td>22</td>
<td>Grading and Earthworks - Generally</td>
<td>50 wks</td>
<td>Tue 4/26/11</td>
<td>Mon 4/9/12</td>
</tr>
<tr>
<td>25</td>
<td>Bridges 1-4</td>
<td>15 wks</td>
<td>Mon 7/4/11</td>
<td>Fri 10/14/11</td>
</tr>
<tr>
<td>44</td>
<td>Creek Upgrades Stage 1</td>
<td>15 wks</td>
<td>Mon 7/4/11</td>
<td>Fri 10/14/11</td>
</tr>
<tr>
<td>50</td>
<td>Bridges 5-8</td>
<td>15 wks</td>
<td>Mon 7/2/12</td>
<td>Fri 10/12/12</td>
</tr>
<tr>
<td>68</td>
<td>Creek Upgrades Stage 2</td>
<td>15 wks</td>
<td>Mon 7/2/12</td>
<td>Fri 10/12/12</td>
</tr>
<tr>
<td>74</td>
<td>Lucas valley Road Realignment</td>
<td>105 wks</td>
<td>Tue 4/26/11</td>
<td>Mon 4/29/13</td>
</tr>
<tr>
<td>76</td>
<td>Rough Grading</td>
<td>3 wks</td>
<td>Tue 4/26/11</td>
<td>Mon 5/16/11</td>
</tr>
<tr>
<td>78</td>
<td>Drainage</td>
<td>4 wks</td>
<td>Tue 5/17/11</td>
<td>Mon 6/13/11</td>
</tr>
<tr>
<td>79</td>
<td>Curb and Gutters</td>
<td>4 wks</td>
<td>Tue 5/14/11</td>
<td>Mon 7/1/11</td>
</tr>
<tr>
<td>79</td>
<td>Road Signs</td>
<td>1 wk</td>
<td>Tue 5/14/11</td>
<td>Mon 6/20/11</td>
</tr>
<tr>
<td>79</td>
<td>Road Base</td>
<td>3 wks</td>
<td>Tue 6/21/11</td>
<td>Mon 7/11/11</td>
</tr>
<tr>
<td>80</td>
<td>Bio-retention Swales M1, M2, M3</td>
<td>4 wks</td>
<td>Tue 7/12/11</td>
<td>Mon 8/8/11</td>
</tr>
<tr>
<td>81</td>
<td>AC 1st Lift</td>
<td>1 wk</td>
<td>Thu 7/12/11</td>
<td>Mon 7/18/11</td>
</tr>
<tr>
<td>82</td>
<td>Main Entrance Gate and Secondary Entrance Gate</td>
<td>8 wks</td>
<td>Mon 1/14/13</td>
<td>Fri 3/8/13</td>
</tr>
<tr>
<td>83</td>
<td>AC Final Lift</td>
<td>1 wk</td>
<td>Tue 3/12/13</td>
<td>Mon 3/18/13</td>
</tr>
<tr>
<td>84</td>
<td>Tie in Road at South and North junctions with (E) LVR</td>
<td>2 wks</td>
<td>Tue 3/19/13</td>
<td>Mon 4/7/13</td>
</tr>
<tr>
<td>85</td>
<td>Remove (E) LVR and landscape</td>
<td>4 wks</td>
<td>Tue 4/2/13</td>
<td>Mon 4/29/13</td>
</tr>
<tr>
<td>87</td>
<td>General Sitework</td>
<td>92.2 wks</td>
<td>Mon 9/26/11</td>
<td>Mon 7/1/13</td>
</tr>
<tr>
<td>108</td>
<td>Terraced Retaining Walls</td>
<td>24 wks</td>
<td>Tue 5/24/11</td>
<td>Mon 11/7/11</td>
</tr>
<tr>
<td>114</td>
<td>Wine cave</td>
<td>29 wks</td>
<td>Tue 9/2/11</td>
<td>Mon 4/8/12</td>
</tr>
<tr>
<td>137</td>
<td>Building Construction</td>
<td>92 wks</td>
<td>Tue 7/19/11</td>
<td>Mon 4/22/13</td>
</tr>
<tr>
<td>139</td>
<td>Primary Structure</td>
<td>52 wks</td>
<td>Tue 7/19/11</td>
<td>Mon 7/16/12</td>
</tr>
<tr>
<td>158</td>
<td>Building Systems</td>
<td>42 wks</td>
<td>Tue 5/22/12</td>
<td>Mon 3/11/13</td>
</tr>
<tr>
<td>168</td>
<td>Interior Architecture</td>
<td>48 wks</td>
<td>Tue 5/22/12</td>
<td>Mon 4/22/13</td>
</tr>
<tr>
<td>174</td>
<td>FF&E</td>
<td>14 wks</td>
<td>Tue 1/15/13</td>
<td>Mon 4/22/13</td>
</tr>
<tr>
<td>176</td>
<td>Building Sitework</td>
<td>52 wks</td>
<td>Tue 4/10/12</td>
<td>Mon 4/8/13</td>
</tr>
<tr>
<td>197</td>
<td>Handover</td>
<td>4.4 wks</td>
<td>Tue 4/23/13</td>
<td>Wed 5/22/13</td>
</tr>
</tbody>
</table>