Mount Tamalpais School
Transportation Demand
Management Plan

MOUNT TAMALPAIS SCHOOL

November 2022
Table of Contents

1. Purpose ... 1
2. Current Travel Characteristics .. 2
 Transport Mode and Trip Generation .. 2
 Traffic Operations .. 4
 Parking .. 4
3. Potential Future Transportation Impacts .. 5
4. Mandatory Transportation Demand Management Strategies .. 6
 Mandatory TDM Strategy #1: Stagger Bell Times ... 6
 Mandatory TDM Strategy #2: Increase Staff Carpooling .. 7
 Mandatory TDM Strategy #3: Transportation Coordinator .. 8
5. Monitoring .. 9

Appendix A. Optional TDM Strategies ... 10
 Optional TDM Strategy #1: Increase Student Vehicle Occupancy ... 10
 Optional TDM Strategy #2: Increase Bus Ridership ... 11
 Optional TDM Strategy #3: Increase Walking / Biking .. 11
 Optional TDM Strategy #4: Implement Additional Monitoring Activities 12

List of Tables

Table 1: Student Transport Modes .. 2
Table 2: Staff Transport Modes .. 3
Table 3: School Peak Hour Existing Vehicle Trip Generation .. 4
Table 4: Projected School Peak Hour Vehicle Trip Generation .. 5
Table 5: Existing and Projected School Parking Demand .. 5
1. Purpose

The Mount Tamalpais School (MTS) is an independent K-8 school located in unincorporated Marin County. MTS has plans for a project that includes an increase in student enrollment from 243 to 295 students (52 additional students) and an increase in staff from 53 to 58 (5 additional staff). Student enrollment would increase by 10-15 students per year over a phased growth period of four years.

MTS makes committed efforts to proactively manage transportation impacts near the school and minimize disturbances to the neighborhood. The school instructs families to access the school through the authorized route from Harvard Avenue southbound as indicated in the current use permit,\(^1\) employs staff to direct traffic and ensure circulation efficiency during drop-off and pick-up periods, and utilizes off-site parking lots with shuttles for attendees of school events.

This Transportation Demand Management Plan (TDM) was prepared to address the potential traffic and parking impacts identified in a comprehensive Transportation Study prepared for the proposed increase in student enrollment.\(^2\) Recommendations from this study are addressed within this TDM, and additional strategies are offered to further meet the school’s goals of reducing impacts associated with school-generated trips and of working cooperatively with the neighborhood.

\(^1\) The existing Mount Tamalpais School Use Permit (93-028) was approved by the Marin County Board of Supervisors via Resolution No. 93-312.

\(^2\) Parisi Transportation Consulting, Mount Tamalpais School Transportation Study. November 2022.
2. Current Travel Characteristics

TRANSPORT MODE AND TRIP GENERATION

MTS students and staff travel to and from campus using a variety of travel modes including driving, walking, and bus/shuttle service. Bus and shuttle services for students to and from campus, including neighborhood bus and shuttle stops, are arranged by the school along routes serving northern Marin County, southern Marin County, and San Francisco. Students have the option to register for bus service at the beginning of the school year for a fee.

The peak hours refer to the 60-minute periods during which the school generates the most intense use of the circulation network and were determined to be from 7:30 AM – 8:30 AM in the morning, and between 2:30 PM – 3:30 PM in the afternoon. These peak hours correspond to the heaviest volume of student drop-offs and pick-ups. To establish a baseline of current school travel characteristics, a comprehensive travel survey was administered to students and staff over the course of three days and vehicle turning movement counts were collected at the school driveway on a typical school day.\(^3\) Table 1 summarizes the results based on person trips to school in the morning and from school in the afternoon, and further breaks these down as occurring before, during, and after the morning and afternoon peak hour of travel from the school.

Table 1: Student Transport Modes

<table>
<thead>
<tr>
<th>Primary Transportation Mode</th>
<th>Morning</th>
<th></th>
<th></th>
<th></th>
<th>Afternoon</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Peak</td>
<td>Peak</td>
<td>Post-Peak</td>
<td>Total</td>
<td>Pct</td>
<td>Pre-Peak</td>
<td>Peak</td>
</tr>
<tr>
<td>Bike</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0%</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Walk</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>2%</td>
<td>0</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Bus/van</td>
<td>0</td>
<td>68</td>
<td>0</td>
<td>68</td>
<td>32%</td>
<td>0</td>
<td>32</td>
<td>6</td>
</tr>
<tr>
<td>One-family vehicle</td>
<td>3</td>
<td>137</td>
<td>9</td>
<td>147</td>
<td>63%</td>
<td>3</td>
<td>87</td>
<td>59</td>
</tr>
<tr>
<td>Multi-family vehicle</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>3%</td>
<td>0</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>216</td>
<td>9</td>
<td>228</td>
<td>100%</td>
<td>3</td>
<td>140</td>
<td>85</td>
</tr>
</tbody>
</table>

Source: Parisi Transportation Consulting, 2022. Note: School morning peak hour is 7:30 AM – 8:30 AM. School afternoon peak hour is 2:30 PM – 3:30 PM.

\(^3\) For further background regarding the data collection efforts, please refer to the Mount Tamalpais School Transportation Study, October 2022.
Table 2 shows travel modes for staff. Typically, all staff who are present during the afternoon leave campus after 3:30 PM. As staff departures from campus do not align with student dismissal, staff travel during the afternoon peak hour is typically zero.

Table 2: Staff Transport Modes

<table>
<thead>
<tr>
<th>Primary Transportation Mode</th>
<th>Morning</th>
<th></th>
<th></th>
<th></th>
<th>Afternoon</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-Peak</td>
<td>Peak</td>
<td>Post-Peak</td>
<td>Total</td>
<td>Pct</td>
<td>Pre-Peak</td>
<td>Peak</td>
<td>Post-Peak</td>
</tr>
<tr>
<td>Bike</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2%</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Walk</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>10%</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Public transport</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drove, parked on campus</td>
<td>7</td>
<td>23</td>
<td>4</td>
<td>34</td>
<td>68%</td>
<td>5</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Drove, parked off campus</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>12%</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Drop-off/ pick-up on campus</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2%</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rode with other, parked on campus</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2%</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rode with other, parked off campus</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4%</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>35</td>
<td>6</td>
<td>50</td>
<td>100%</td>
<td>7</td>
<td>0</td>
<td>44</td>
</tr>
</tbody>
</table>

Source: Parisi Transportation Consulting, 2022. Note: School morning peak hour is 7:30 AM – 8:30 AM. School afternoon peak hour is 2:30 PM – 3:30 PM.

Private vehicle is the primary mode of student and staff travel to and from campus. The number of vehicle trips associated with automobile and bus/shuttle travel is lower than the number of person trips due to carpooling and bus use. On average during school peak hours, passenger vehicle occupancy is approximately 1.5 students and 1.2 staff per vehicle.4 Whereas the majority of student drop-off and pick-up passenger vehicle trips account for an entering and exiting trip, staff in general generate one entering vehicle trip in the morning when parking, and one exiting vehicle trip in the afternoon when departing. Existing vehicle trips are displayed in Table 3.

4 Rates do not include drivers who drop off or pick up students or staff.
Table 3: School Peak Hour Existing Vehicle Trip Generation

<table>
<thead>
<tr>
<th>Group</th>
<th>Morning Peak Hour Trips</th>
<th>Afternoon Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>In</td>
</tr>
<tr>
<td>Students</td>
<td>204</td>
<td>103</td>
</tr>
<tr>
<td>Staff</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>232</td>
<td>130</td>
</tr>
</tbody>
</table>

TRAFFIC OPERATIONS

The Mount Tamalpais School Transportation Study contains analyses of vehicle turning movements, intersection level of service, school loading zone operations, driveway and roadway queue formation, and historical collisions. Due to the narrow width of California Avenue between Harvard Avenue and Loring Avenue, school staff assist as traffic control flaggers and direct traffic for approximately 20 minutes during the peak morning drop-off and afternoon pick-up time periods. On some days, this vehicle platoon traffic control often is able to operate effectively. However, depending on various conditions such as the number and locations of cars parked along California Avenue, there are occasions during which queues traveling east on California Avenue back up into the five-legged intersection at Loring Avenue / California Avenue / Greenhill Road.

PARKING

Vehicle parking for staff and visitors is available in a campus parking lot with 34 designated parking spaces, including seven compact parking spaces and two Americans with Disabilities Act (ADA) accessible parking spaces. Off-site parking spaces in the neighborhood are also available, and some locations include restrictions either during school days from 8:00 AM – 9:00 AM and 3:00 PM – 4:00 PM or during the full length of a school day from 8:00 AM – 4:00 PM.

Parking supply and demand observations were conducted in addition to the travel survey, which enables characterization of parking demand. Analysis results indicate that the school parking lot operates at full capacity, and an additional six staff vehicles park on the street on a typical school day.
3. Potential Future Transportation Impacts

The Mount Tamalpais School Transportation Study utilized a wide array of data to characterize existing conditions and evaluate a range of potential transportation impacts associated with the project, including trip generation, operational traffic impacts to surrounding roadways, and parking demand. Table 4 and Table 5 summarize the projected increase in vehicle trips and parking demand, respectively.

Table 4: Projected Increase in School Peak Hour Vehicle Trip Generation

<table>
<thead>
<tr>
<th>Group</th>
<th>Morning Peak Hour Trips</th>
<th>Afternoon Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trips</td>
<td>In</td>
</tr>
<tr>
<td>Students</td>
<td>44</td>
<td>22</td>
</tr>
<tr>
<td>Staff</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td>27</td>
</tr>
</tbody>
</table>

Table 5: Existing and Projected School Parking Demand

<table>
<thead>
<tr>
<th></th>
<th>Existing</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff Parking Demand in Campus Parking Lot</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>Staff Parking Demand off Campus</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Based on current travel mode shares, operational roadway characteristics, traffic control flagging operations, and parking supply and occupancy analysis, the Mount Tamalpais School Transportation Study concluded that average vehicle delay at each of the study intersections would not be affected by the school’s phased enrollment increase. However, the study identified two impacts that would result from the project:

1) **Vehicle queues at the traffic control flagger location would impact the operation of the Loring Avenue / California Avenue / Greenhill Road intersection.** Queues up to 270 feet would form along eastbound California Avenue approaching the traffic control flagger, which would cause vehicle queues to build up into the intersection. Queues extending into this intersection should be avoided due to the five-legged intersection’s complexity, overall traffic volume, and neighborhood traffic operations.

2) **On-street staff parking demand would exceed parking supply.** Based on parking occupancy and timed parking restrictions on California Avenue and Harvard Avenue, the additional increase in staff parking demand would not be accommodated. Meeting this additional parking demand on other neighborhood streets such as Wellesley Avenue is not desirable.
4. Mandatory Transportation Demand Management Strategies

This section provides Transportation Demand Management (TDM) strategies to address the two traffic and parking impacts identified in the Mount Tamalpais School Transportation Study and outlined in the previous chapter. Implementation of these TDM strategies and associated measures would sufficiently reduce identified traffic and parking impacts resulting from the project.

MANDATORY TDM STRATEGY #1: STAGGER BELL TIMES

Impact
Vehicle queues at the traffic control flagger location would impact the operation of the Loring Avenue / California Avenue / Greenhill Road intersection.

Strategy
Reduce intensity of vehicle arrivals during drop-off and pick-up periods by implementing staggered bell times.

Summary
School currently starts at 8:15 AM for all students. This leads to minor queuing as parents generally arrive at the same time to drop their children off at school. Dismissal in the afternoon is staggered: kindergarten students are released at 2:50 PM, grades 1-3 are released at 3:00 PM., and grades 3-8 are released at 3:15-3:30 PM. This can also lead to queuing as the majority of parents arrive at the same time to pick up their students.

Because vehicle queues form as a result of both vehicle volume as well as arrival rate, staggering the arrival and dismissal of certain grades would provide an opportunity to spread out parent arrivals and reduce both congestion and queuing resulting from an increase in students. The following measure can be considered to reduce congestion and queuing during drop-off and pick-up times:

- Start and end middle school (grades 6-8) instruction 15 minutes later than the rest of the student body.

A 15-minute difference in middle school bell times would result in shifting between 25% and 35% of arriving peak hour vehicle trips to an offset arrival window, resulting in a reduction in maximum queue length. Vehicle queues of varying length would form over a slightly longer period of time than the current drop-off and pick-up period durations. However, there would be less incidence of vehicle queues building up into the Loring Avenue / California Avenue / Greenhill Road intersection than occurs currently, thereby improving traffic operations through this intersection compared to existing conditions.
MANDATORY TDM STRATEGY #2: INCREASE STAFF CARPOOLS

Impact
On-street staff parking demand would exceed on-street parking supply.

Strategy
Reduce on-street staff parking demand by increasing staff carpooling.

Summary
The majority of staff drive by themselves to and from the campus. Staff vehicle occupancy is 1.24 during the morning peak hour and 1.00 during the afternoon post-peak period, when the majority of staff leave the school for the day (no staff typically depart during the afternoon peak hour). Strategies to encourage carpooling among staff could reduce the school’s vehicle trips and prevent parking impacts within the neighborhood.

The following measures can be considered to increase carpooling among staff:

- Offer a “cash out” incentive to pay staff for not driving alone to campus.
- Assign a Transportation Coordinator to facilitate carpool matching between nearby staff at the beginning of each academic year (see Mandatory TDM Strategy #3).
- Highlight the benefits of carpooling in back-to-school informational materials.
- Consider the provision of preferential staff parking spaces for carpool parking.
- Consider offering guaranteed ride home services that allow staff who don’t bring a car to work to get a free ride home (usually via taxi or rideshare service) if they need to stay late or if they need to leave unexpectedly in the middle of the day.

By implementing the measures above, resulting parking demand for the school staff would be reduced by at least five parking spaces. This outcome will largely be dependent on establishing an appropriate value of the “cash out” incentive, which can be refined over the course of the phased student increase period, which will be monitored as required in Section 5. Successful implementation would result in at most the same number of staff vehicles parking along California Avenue and Harvard Avenue compared to existing conditions.
MANDATORY TDM STRATEGY #3: TRANSPORTATION COORDINATOR

Strategy
Assign a Transportation Coordinator to oversee TDM implementation and monitoring.

Summary
It is recognized that few plans come to fruition without active management and a deep sense of initiative ownership. Mandatory TDM Strategies #1 and #2 address impacts that must be managed as a result of the project. This strategy does not directly address an identified impact, but institutes a single contact point and responsible person to ensure that these actions result in intended outcomes through proper coordination of activities and monitoring.

The Transportation Coordinator role can be fulfilled as part of an existing school staff member’s duties. The Transportation Coordinator would be responsible for implementation, monitoring, and reporting of the TDMP, including the following tasks:

- Facilitate carpool matching between nearby staff at the beginning of each academic year.
- Ensure that communication of the staff carpooling program is sufficiently planned and effective.
- Coordinate effectiveness monitoring activities (see Section 5).
- Manage compilation of annual reporting requirements.
Overall success of this TDMP with regard to managing traffic and parking impacts will depend on the extent of strategy adoption and assurance that implemented strategies result in their intended outcomes. MTS shall engage a qualified professional traffic engineering firm to ensure that the TDM strategies and measures are implemented effectively and result in outcomes that address the identified enrollment increase impacts of vehicle queues at the Loring Avenue / California Avenue / Greenhill Road intersection and on-street staff parking demand.

The mandatory TDM strategies are expected to sufficiently reduce vehicle queue disturbance to roadway operations and reduce overall on-street parking demand to no worse or better than existing conditions. However, as traffic and parking are dynamic situations, if monitoring activities identify that the TDM strategies have not sufficiently managed these impacts, additional TDM strategies and measures from Appendix A should be integrated into future semester implementation plans.

Ongoing TDM program coordination and monitoring will commence upon initial implementation of the phased MTS enrollment increase and be reported to the County of Marin on an annual basis for a period of four years. The annual report will be compiled by a qualified professional traffic engineering firm engaged to assist with monitoring activities. This will provide early opportunity to establish TDM monitoring and implementation plans and ensure that incremental incorporation of TDM measures is measured and effective.

The following monitoring activities will comprise the initial TDM monitoring plan:

- Observe vehicle queue formation at the Loring Avenue / California Avenue / Greenhill Road intersection during the course of morning drop-off and afternoon pick-up periods once per semester. Observations should be conducted on a typical Tuesday, Wednesday, or Thursday.

- Conduct a staff parking survey once per semester to validate staff vehicle parking reduction matches participants in the parking “cash-out” incentive.

- Conduct a TDM review meeting each semester between the Transportation Coordinator, Head of School, and qualified professional traffic engineering firm. If shortfalls in intended outcomes are identified, additional TDM strategies and measures from Appendix A will be agreed upon for the upcoming semester’s TDM activity implementation and monitoring.
Appendix A. Optional TDM Strategies

As described in the Mount Tamalpais School Transportation Study and this TDMP, measures within Mandatory TDM Strategy #1 and #2 should be implemented by MTS. The school can also utilize a variety of measures to reduce additional school-related vehicle trips and parking demand.

This section offers a suite of optional TDM strategies and measures designed to reduce the school’s transportation impacts. These strategies are not mandatory upon onset of the application of this TDMP. Rather, this section includes various discrete measures that may be considered and applied considering the changing contextual nature of student and staff addresses, surrounding transportation network trends, and effectiveness monitoring. The proposed measures may further assist MTS in pursuing its goals of reducing impacts associated with school-generated trips and working cooperatively with the neighborhood.

Optional TDM measures are categorized within the following strategies:

1) Increase Student Vehicle Occupancy
2) Increase Student Bus / Shuttle Ridership
3) Increase Walking / Biking
4) Implement Additional TDM Monitoring Activities

OPTIONAL TDM STRATEGY #1: INCREASE STUDENT VEHICLE OCCUPANCY
The number of student occupants in private vehicles is slightly higher during the afternoon pick-up period compared to the morning drop-off period. The average student occupancy in passenger vehicles is 1.50 and 1.56 during the morning and afternoon school peak hours, respectively. The potential exists to reduce the number of student vehicles trips by encouraging student carpooling.

The following measures could be considered to increase student vehicle occupancy during both the morning and afternoon commutes:

- Have the Transportation Coordinator facilitate carpool matching between nearby families at the beginning of each academic year.
- Highlight the benefits of carpooling in back-to-school informational materials.
- Consider awarding “transit bucks” to students who arrive via carpool (or bus / van, transit, walk or bicycle) to be used for school purchases.
- Consider asking families to sign a pledge to carpool when feasible.
• Consider participation in Safe Routes to School encouragement programs to promote carpooling.

OPTIONAL TDM STRATEGY #2: INCREASE BUS RIDERSHIP

Mount Tamalpais School students are served by school buses traveling to and from northern Marin County, southern Marin County, and San Francisco, as well as a van that serves Mill Valley. Approximately 32% of students take either a school bus or van to school during the morning peak hour, while approximately 23% of students utilize these services during the afternoon peak hour. Students are required to register for bus service at the beginning of each academic year. All of the buses and vans have some excess capacity, which provides an opportunity to increase the number of students commuting using these options.

The following measures can be considered to increase the number of students using a bus or van during both the morning and afternoon commutes:

• Offer a subsidized bus serving students who live in Mill Valley.
• Allow students to pay for buses and vans on a “per ride” basis.
• Consider providing shuttle service to and from a satellite pick-up/drop-off location to the school.
• Consider eliminating or reducing bus fees, or rolling bus fees into overall tuition, providing an incentive for parents to have their children use the bus.
• Consider awarding “transit bucks” to students who arrive via bus / van (or carpool, transit, walk or bicycle) to be used for school purchases.

OPTIONAL TDM STRATEGY #3: INCREASE WALKING / BIKING

Walking and biking to campus are challenging for students, staff due to the steep, narrow neighborhood streets and commute distances that arelarging beyond walking and biking range. 2% of students bike or walk during the morning peak period, while 6% bike or walk from school during the afternoon peak hour. Approximately 12% of staff bike walk to school during the morning peak hour. Walking is more popular than biking for students and staff.

The following measures can be considered to increase the number of students and staff using active transportation modes to travel to and from campus:

• Promote bicycling as an alternative to driving or being driven for students and staff that reside within a certain mile radius of the school.
• Promote walking to and from school for students and staff that live within a short walking distance of the Mount Tamalpais School.
• Partner with Safe Routes to School to have an annual presentation or classes to teach students safe roadway skills for bicyclists and pedestrians and encourage non-motorized access to the school.

• Offer a “cash out” incentive to pay staff for taking active modes to campus.

• Offer incentives for purchase or rental of electric bicycles (“e-bikes”) to encourage middle school students to ride e-bikes to/from school.

• Consider awarding “transit bucks” to students and staff who arrive via active modes (or transit, bus / van, or carpool) to be used for school purchases.

• Consider offering a guaranteed ride home services that allow staff who don’t bring a car to work to get a free ride home (usually via taxi) if they need to stay late or if they need to leave unexpectedly in the middle of the day.

OPTIONAL TDM STRATEGY #4: IMPLEMENT ADDITIONAL MONITORING ACTIVITIES

The following measures can be added to the required TDM monitoring plan if it is determined that greater insight into the status of existing transportation and parking impacts or the potential effectiveness of other optional TDM strategies is necessary:

• Consider conducting an annual student and staff transportation mode survey.

• Consider conducting peak hour arrival and departure observations on a typical academic day each semester. This would consist of logging arrival and passenger count data of all vehicles arriving during the course of a morning drop-off and departing during an afternoon pick-up period.

• Consider convening an annual meeting with neighbors to discuss any traffic, parking, or transportation-related safety concerns and to develop solutions to resolve these issues as necessary.